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Abstract-External heat transfer coefficients from short quartz-coated cylindrical hot-film anemometer 
probes in mercury were evaluated by subtracting the thermal impedance of the quartz coatings from the 
overall thermal impedance of the sensors. The results are compared with those by Sajben for long enamel- 
coated wires and with available theory for infinite cylinders, and correlation equations are given. The low 
sensitivity of finite cylinders may be qualitatively explained by the persistence of end losses, i.e. by two- 
dimensional conduction in the velocity-potential surfaces at arbitrary velocities. For comparison, results 

are also given for heat transfer to water. 

G*, 

k.r, 
kQ, 

L 
N, 
No 
N*, 
NO*, 
p, 
R, 

T 

T: 
T co? 

NOMENCLATURE 

empirical parameter, equation (7) ; 
empirical parameter, equation (7) ; 
fouling factor, equation (6); 
outer diameter of sensor ; 
diameter of platinum film or wire ; 
Grashof number based on D and 

TH - T,; 
Grashof number based on D and 

T, - T,; 
thermal conductivity of fluid; 
thermal conductivity of quartz or 
enamel coating ; 
length of sensor ; 
Nusselt number based on TH - T, ; 
valueofNatR=O; 
Nusselt number based on To - T, ; 
valueofN*atR=O; 
PBclCt number (OR) ; 
Reynolds number based on D and 
free-stream velocity ; 
temperature of hot-film or hot-wire; 
temperature of surface of sensor ; 
temperature of undisturbed fluid ; 

* NRC-NASA Resident Research Associate, Laboratory 
for Theoretical Studies, Goddard Space Flight Center, 
NASA, Greenbelt, Maryland 20771. 

Euler’s constant (05772. . .); 
micron [lo-“m] ; 
Prandtl number ; 
natural (or Napierian) logarithm 
function ; 
“Large oh” of Landau order nota- 

tion, 2 a 0 (E) = const. 

INTRODUCTION 

THEDEVELOPMENTO~ cylindrical, quartz-coated, 
hot-film probes? has prompted a number of 
investigations into its characteristics for use as 
an anemometer in electrically conducting fluids 
such as mercury. In this use the fluid velocity is 
determined from the rate of heat loss from the 
cylinders, and so a knowledge of the heat 
transfer from cylinders to air, water, oils and 
transfer from cylinders to air, water, oils, and 
similar fluids has been much studied, but there 
is little similar information in low Prandtl 
number fluids such as liquid metals. In particu- 
lar, information on external heat transfer co- 
efficients is scarce. 

Previous experiments performed in mercury 
with commercially available probes involved 

t By Thermo-Systems, St. Paul, Minnesota. 
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cylindrical sensors having aspect ratios on the 
order of 20 [l-4]. An earlier study with long 
enamelcoated hot-wires having aspect ratios 
of about 100 had been made by Sajben [5, ft]. 
As we shall see, variation of the aspect ratio has 
considerable effect on the heat transfer. 

In this paper we review empirical and 
theoretical formulae for steady convective heat 
transfer from infinite cylinders, suggest theoret- 
ical approaches for finite cylinders, and present 
new data on heat transfer rates from short 
cylinders to mercury and water. Although some 
natural convection data are reported here, we 
have been unable to find pertinent theory or 
experiments for comparison (short vertical 
cylinders, low G*) and consequently restrict our 
review to forced convection. 

INFINITE CYLINDERS-REVIEW 

Empirical formulae 
Here we list some empirical correlations to 

be used for comparison with our experimental 
results for water. In 1932 Ulsamer [7] correlated 
available data for air, water and several oils 
(0.7 < c < 1000) by the expressions 

N* _ 0.91a0.31 Ro.385 I 0.1 < R < 50 

N* = @(j@.31 p.50 
9 50 < R < 10000 I “I 

where N* is the Nusselt number based on 

T, - T,, To is the temperature of the surface 
of the cylinder, Ik, is the temperature of the 
~disturb~ fluid, LT is the Prandtl number of 
the fluid, and R is the Reynolds number based on 
free-stream velocity and cylinder diameter.? 
Ulsamer’s correlation was superseded by 
Kramers [S] with 

N* = 0.420~.~’ +- 0$70’,~~ R”.50, 2 < N* < 20 

t The fluid properties in (1) were evaluated as an inte- 
grated average over the temperature range To-T,, whereas 
those of the other invest&at&s reported here were evaluated 
at a mean-film temuerature (2-k + T-)/2 The procedure in 
[l] was to evaluatezat T, the %scos& used in-the Grashof 
number G*, the mass density, and the specific heat capacity ; 
and to evaluate at fTH + 732 the viscosity used in R and u, 
and the thermal conductivity. 

because he objected to the discontinuity in 
slope of equation (1) at R = 50. The objection 
may be unwarranted because the discontinuity 
may be indicative of the inception of vortex 
shedding. For wires in water Piret [9] obtained 
the correlation 

N* = 0.965a0.3 Ro.28 

0.08 < R < 10, 2.37 < Q. < 564. 

None of the foregoing correlations are ex- 
pected to be applicable to liquid metals, whose 
Prandtl numbers seldom exceed 004. Sajben 
[S, 61, however, made careful measurements 
of heat transfer rates to mercury from enamel- 
coated wires having aspect ratios of about 100, 
and his data are compared with ours later. 

Theoretical results 
The theoretical approaches to the steady 

state convection problem have usually required 
that the structure of the velocity field be approx- 
imated by forms amenable to solution of the 
heat equation. The physical properties have 
usually been assumed constant and the temp- 
erature of the cylinder assumed uniform. Com- 
plications such as viscous dissipation and 
radiation have been ignored. 

First we note the zero-flow solution N* -+ 0 
as R -+ 0; it is well known that no steady state 
can be reached for pure heat conduction from 
an infinite cylinder. 

One class of theories uses an Oseen-type 
approximation of the heat equation in which 
the velocity field is approximated everywhere 
by the undisturbed free-stream velocity. The 
approximation is therefore valid only in the 
limit P -+ 0 in the absence of natural convection 
currents. The result was given by Cole and 
Roshko [lo] as 

N* = ;?/[log(S/P) - r] -t- O(P) (2) 

where r is Euler’s constant (0.5772. . .f and 
P = crR is the P&let number. This was extended 
to O(p) by Illingworth [I l]. The experiments of 
Collis and Williams [12] show that equation (2) 
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is moderately successful as an asymptote for 
small P. 

A related class of approximations takes into 
account the higher order structure of the 
velocity field at low R. Piercy and Schmidt [ 131 
suggested using the Oseen-flow approximation 
to the velocity field for arbitrary R in convection 
problems. Using this approach, Broer et al. [14] 
performed a numerical calculation of N* at one 
value of R for air and water. Recently Kassoy 
[15] used the method of matched asymptotic 
expansions to obtain the first correction term to 
(2). Slightly different results were obtained 
independently by Hieber and Gebhart [16] and 
by Wood [17], of whom the latter used an 
iterative technique beginning with the Oseen 
solutions to the Navier-Stokes and heat equa- 
tions. 

Another class of theories uses a potential 
flow (inviscid) approximation of the velocity 
field. The approach developed by Boussinesq 
[18] was to use streamlines and velocity 
potential lines as coordinates (equivalent to a 
conformal mapping of the cylinder into a short 
plate) and then to neglect conduction along the 
streamlines for P ZB 1. The result is 

N* = ; :P ’ 
0 

= 1.016JP. (3) 

King [19]. included the conduction along the 
streamlines but used improper boundary condi- 
tions. Aichi [20] corrected King’s analysis and 
obtained (3) for P % 1 and a result similar to (2) 
for P 4 1. Similarly, Piercy and Wintry [21 J 
obtained (3) for P % 1 and exactly (2) for 
P Q 1. The entire range of P for potential flow 
was solved by Tomotika and Yosinobu [22] ; 
their solution contains Piercy and Wirtny’s as 
special cases That N* is given by (2) for small 
P for both potential and uniform flows is an 
interesting coincidence, as noted in Corrsin’s 
review [23]. We note here that the empirical 
equation 

1 + 2Q3P2 
N* = 2P, -t +[log (8/P) - I’l (4) 

gives (2) for P % 1, (3) for P % 1, and differs 
from Tomotika and Yosinobu’s calculations 
by less than 3 per cent. Finally, Grosh and Cess 
[24] reasoned that for large R in liquid metals 
the thermal boundary layer should be so much 
thicker than the viscous boundary layer that 
the heat transfer should be host completely 
insensitive to the details of the flow (including 
wake and separation) in the vicinity of the 
cylinder. They reported equation (3) for the case 
of uniform surface temperature and similar 
formulae for other boundary conditions. 

Recently Dermis, Hudson and Smith [25] 
have evaluated N* over the range 041 < R < 40 
by solving the Navier-Stokes and heat equations 
numerically. They obtained good agreement 
with the experiments of Collis and Williams 
tl2] in air. 

FINITE CYLINDERS 

The theory of finite cylinders introduces the 
further complexity of thr~d~ens~onal varia- 
tion of the field quantities. The problem is 
simplified somewhat if the cylinder is represented 
by a long ellipsoid of revolution of major axis L 
and minor axis D with uniform surface tempera- 
ture. The separable coordinates for this bound- 
ary and Hehnholtz’s equation are prolate 
spheroidal coordinates.? The solutions for 
Hehnholtz’s equation are spheroidal wave func- 
tions (or Legendre wave functions) and for 
Laplace’s equation are associated Legendre 
functions. 

For no fluid motion the solution of Laplace’s 
equation outside the spheroid gives [lo] 

N; = 2,[~ogcoth(~coth-l~)~ 

=! %Tlog W/~)l (5) 

for L/D B 1. This result is intermediate between 

f For example, see [26] or [27J 
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the values N* + 0 as R -+ 0 for a cylinder and 
Ng = 2 for a sphere, where Ng is the value of 
N* at R = 0. 

The Oseen-type approximation can be applied 
by transforming the heat equation to the 
Helmholtz equation, as for the cylinder. There 
is one more separation equation than for the 
cylinder problem, and the boundary condition 
of the transformed temperature is slightly more 
complicated. When the coefficients in the general 
solution have been evaluated (we have not done 
this), N* can be calculated by taking P 4 1. 

The potential flow approximation can also be 
generalized to the three-dimensional case. The 
analog of Boussinesq’s transformation would be 
to let one coordinate be the streamlines and the 
other two be arbitrary on the potential surfaces. 
If one of these is the hyperboloidal coordinate, 
the resulting mapping should be similar to that 
for the cylinder, except being of finite width. 
The analogous high P approximation, which 
neglects conduction along streamlines, still 
involves two-dimensional conduction in the 
potential surfaces, so the problem is more 
difficult than for the infinite cylinder, where only 
one dimensional conduction, along the potential 
lines, occurs at high P. 

This picture suggests that conduction in the 
fluid is more efficient for short cylinders than 

long cylinders with a corresponding reduction 
in sensitivity to velocity changes. Crudely 
speaking, the finite cylinder should have large 
end losses that persist at all velocities. 

So far this discussion has been restricted to 
constant T,. A more realistic case would be to 
allow the local resistivity of the hot-film or 
hot-wire (and hence the local Joule heating) to 
assume the value corresponding to the tempera- 
ture of the fluid at the surface. This would cause 
the nonuniform temperature distribution men- 
tioned in [l], p. 51. The temperature on the 
spheroid would satisfy a nonhomogeneous 
Churchill condition ; in spheroidal coordinates, 
however, the gradient term contains a variable 
scale factor for the hyperboloidal coordinate 
that destroys the orthogonality of the eigen- 
functions. 

THE EXPERIMENT 

The equipment used in this study is described 
in detail by Hill [l] and will be but briefly 
summarized here. The cylindrical hot-film sens- 
ors are sketched in Figs. 1 and 2. The sensor is a 
quartz fiber covered with a thin film of platinum 
whose length is defined by a thicker plating of 
gold at either end. This sensor is then soldered 
across the tips of two rigid needles, the platinum 
and gold covered with a thin layer of quartz, and 

Gold-plated 1 
stainless steel 
supports / 

Cylindrical 
quartz-coated 
hot-film 

Flow 

I , 

Epoxy cootmg 

FIG. 1. Sensor and epoxy-coated supports of probe 8. 
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Fluid ot Tm / 

Pt film or edge 
of wire at TH 

Surface of 

coating at TO 

FIG. 2. Schematic of cross-section of sensor. 

the remainder of the assembly insulated with a 
coating of epoxy resin. The diameter D, length L 
and aspect ratio L/D of the sensors were 
53.6 p, 1.06 mm and 19.8 for probe 7 and 
57.9 p, 1.03 mm and 17.8 for probe 8. 

The probes were towed through a 4.88 m 
trough of mercury (or water) at speeds up to 
56 cm/s. In the experiments reported here the 
sensors were vertical and always normal to the 
flow direction as indicated in Fig 1. The probe 
rode on a cart beside the trough, and great pains 
were taken to avoid vibration and noise in the 
cart system, to achieve a uniform speed quickly, 
and to measure the speed with precision. The 
probes were heated with a Model 1010 constant- 
temperature anemometer circuit manufactured 
by Thermo-Systems. The resistance decks in 
the bridge of the circuit were calibrated to 
within 01 per cent, and the bridge was manually 
balanced during each run. 

The fluid temperatures T, were about 23°C 
with overheats (T, - T,) from 35 to 40°C. The 
Prandtl numbers 0 were about O-0225 for 
mercury and 4.32 for water. 

RESULTS 

Model for calculating N* 
The heat transfer model used for calculating 

E 

N* is described in detail in [l] and [5] and is 
briefly summarized here. Let D, be the diameter 
of the hot-film or hot-wire (Fig. 2) maintained 
at uniform temperature T,. Heat is conducted 
through the uniform coating of quartz or enamel 
of thermal conductivity kQ and outside diameter 
D and is convected away by the fluid, whose 
thermal conductivity is k, and whose local 
external heat transfer coefficient is independent 
of azimuth The overall Nusselt number N, 
based on TH - T,, can be measured and is 
related to N* in this model by 

l/N = l/N* + C, (6) 

where C is a dimensionless fouling factor given 

by 

C = ; 4 log (D/DH). 
Q 

The assumption of azimuthal independence of 
the thermal impedance is crucial to the validity 
of the model. It is just&d only by the uniformity 
of the quartz or enamel coating and by the 
tendency of the high k, of mercury to smooth 
out variations in the local heat transfer 
coefficient. 

In general C is quite difficult to determine. 
Sajben’s approach was to shift the hot-wire 
calibration data along the l/N-axis until N*, 
the adjusted value of N, coincides with the 
prediction of equation (2) at P = 0=05. C is 
about 3.4 for his data shown here. 

The approach used here is to calculate C 
directly after measuring the cross sections of 
the sensors viewed under a microscope. The 
ratio D/D, was determined to be 1.16 for 
probe 7 and 1.12 for probe 8, corresponding to 
quartz thicknesses of 3.70 p and 3.10 p. From 
interpolated values of kQ for vitreous quartz 
from Lange [28], C was calculated to be about 
040 and 0.29 for probes 7 and 8 in mercury and 
about 0.028 for probe 7 in water. Because of the 
temperature dependence of k, C depends 
slightly upon N. The temperature drop across 
the quartz layer varied from 13 to 37 per cent 
of the total overheat during operation in 
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mercury, and from 2 to 15 per cent of the total 
in water. 

Natural convection 
The natural convection behavior of probes 

7 and 8 in mercury is plotted in Figs. 3 and 4, in 

046 
I 

1 
___----- 0 /- 

0.‘- 
Probe 6 

0.44 /’ ‘P __-%-- 
D’-- 

I’ 
Probe 7 

/’ 

0401 I I I I I ! I I I 
02 0.4 0.6 0.6 I.0 

G 

correlation based on TH - T,. 
FIG. 3. Natural convection from vertical sensors in mercury ; 
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0.50 

o ,*A- 
-0 

O,T ’ 
/ / -/ 
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I I I J 
0.2 0.4 0.6 0.6 I.0 

G* 

FIG. 4. Natural convection from vertical sensors in mercury; 
correlation based on TO - T,. 

which N,, is the value of N at R = 0, and G and 
G* are Grashof numbers based on TH - T,. 
and To - T, respectively. The dashed line of 
Fig. 4 corresponds roughly to dlog Ng/dlog G* 
= @03. The sensors were mounted vertically. 
Equation (5) estimates N,* as 0543 and 0560 for 
probes 7 and 8. Sajben’s experimental value of 
0.42 for N,* also corresponds reasonably close 
to the estimate 0.38 calculated with equation (5) 
for an aspect ratio of 100. Disagreement with (5) 
may arise from weak convection currents, from 
obstruction and distortion of the heat conduc- 
tion path by the sensor supports, and from 

nonuniformity of T,. The reasonable success of 
(5) and the fact that Ng is independent of sensor 
orientation ([ 11, p. 16) indicate that the natural 
convection currents in mercury are weak and 
that pure conduction is the dominant heat 
transfer mechanism. 

For probe 7 in water at G* = 0.0114, Ng was 
estimated from (6) to be O-814, much larger than 
from (5). This indicates, together with the 
observed dependence of Ng on orientation, that 
the natural convection currents in water are 
rather strong. 

That the geometry is important here is also 
evidenced by the fact that heat transfer rates 
calculated by the formulae of Eckert [29] and 
Ostrach [30] for vertical plates in mercury and 
water are an order of magnitude too low and 
overestimate dependence on Prandtl number. 

Forced convection 
Forced convection results for probes 7 and 

8 in mercury are shown in Figs. 5 and 6. Un- 
fortunately, there is no way of assessing the 
effects of distortion of the flow- and temperature- 
fields by the sensor supports (Fig. 1). The 
difference between the curves in Fig. 5 is 
attributable to the thermal impedances of the 
quartz coatings, as resolved by Fig. 6. Also 
plotted in Fig. 6 are some theoretical predictions 
for infinite cylinders? and the results of Sajben 
for long cylinders. The latter, except for R -C 2 
where threedimensionality is important, fall 
away from Cole and Roshko’s approximation 
towards the Boussinesq result and, in fact, fit 
Tomotika and Yosinobu’s potential flow solu- 
tion and the simplified formula (4) very well over 
the entire range. This behavior is in support of 
Grosh and Cess’s conjecture mentioned earlier. 

t The formulae of references [lS] and [17], which take 
into account the higher order structure of the velocity field, 
are not applicable here because of divergences which occur 
for finite R, even though P is not large. The result of reference 
[16], however, does not diverge in this range because R 
does not appear in the formula for N*. Calculations with 
this formula show a slight improvement over (2). 
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FIG. 5. Forced convection in mercury; correlation based on 
TR - T,. 

00 05 I.0 20 

0 

Fia. 6. Forced convection in mercury; correlation based on 
To - T,. 
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The short cylinders in mercury have notice- 
ably lower sensitivity to velocity, in accordance 
with our previous suggestion concerning the 
persistence of two~~mension~ conduction even 
in the large P approximation to the three- 
dimensional potential flow model. An inde- 
pendent verification of this low sensitivity is in 
the work of Malcolm [4] for a sensor with aspect 
ratio 16. His plots of l/N, - l/N = X, which 
is relatively independent of C, showed sensitivity 
comparabie to our plots of X for probes 7 and 8. 

The data of Fig. 6 are correlated within about 
2 per cent by the equation 

IV* - a = [b”P + (NT, - a)&]*, (7) 

,where a = O-22 -t- 3-2 D/L and b = 0.95 - 9.2 
D/L. Equation (7) should provide a useful 
approximation for design purposes in the range 
L/D > 15 and P < 3. Also, Nz must be greater 
than a and may be estimated from (5) with a 
reduction in accuracy. 

Forced convection results for probe 7 in water 
are shown in Figs. 7 and 8. The high value of 
N at R = 49.8 is apparently due to the inception 

of vortex shedding ([ 11, p. 36). Because P was 
much larger for the water runs than for the 
mercury runs, the thermal boundary layer was 
much thinner, and the empirical formulae for 
long cylinders are expected to be valid here. The 
agreement in Fig. 8 with Ulsamer’s correlation 
is only expected to be qualitative because of the 
doubtful validity of equation (6) for water. The 
slightly lower ~nsitivity may also be a manifesta- 
tion of the end effect noted in mercury and of 
axial conduction in the quartz film. A similar 
comparison, in which C was neglected, has 
been made by James ([31], Figs. 13 and 14) for 
L/D Y 20 in water. 

CONCLUSIONS 

The heat transfer model of equation (6) has 
been fairly successful in the estimation of 
external heat transfer coefficients in mercury. 
For natural convection it was found that the 
convection currents are weak and that pure 
conduction is the dominant mode of heat 
transfer. For forced convection from short 
cylinders the sensitivity to velocity is much less 

0 

5 -- 

2 -- Probe 7 in water 

0 / 2 3 4 5 6 7 8 

JR 

FIG. 7. Forced convection in water; correlation based on 
TH - T,. 
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6 

5 

4 

N* 

3 

2 

0 I 2 
3 JR 4 

5 6 7 6 

FIG. 8. Forced convection in water; correlation based on 
7, - T,. 

than for long cylinders, presumably because of 
conductive end loss effects in the fluid 

In water, for which equation (6) is less accurate, 
qualitative agreement with Ulsamer’s correla- 
tion was obtained. The natural convection 
currents were much stronger than in mercury. 
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TRANSPORT DE CHALEUR PAR CONVECTION DANS LE MERCURE A PARTIR DE 
PETITS CYLINDRES 

R&um&Les coefficients de transport de chaleur exterieur B partir de courtes sondes antmomCtriques 
cylindriques a film chaud rev&u de quartz vers du mercure ont tt& tvalu& en soustrayant l’imp8dance 
thermique des revetements de quartz de l’im@dance thermique, globale des capteurs. Les rbsultats spnt 
comparb avec ceux de Sajben pour de longsfils tmaillb et aver la thebrie disponible des longs cylindres 
et l’on a donn6 des tquations de corrklation. La faible sensibliti des cylindres finis peut btre expliquCe 
qualitativement par la persistance des pertes aux extrtmitts, c’est-ii-dire par la conduction bidimension- 
nelle dans les surfaces de potentiel de vitesse d dy vitesses arbifraires. Dans un but de comparison, on a 

donne aussi les rbultats pour le transport de chaleur dans l’eau. 

Zusammenfassung-;iussere Wiirmeiibergangskoefzienten an kurzen, quarzummantelten, zylindrischen 
Heiss-Film-Anemometersonden in Quecksilber wurden ausgewertet, indem vom gesamten thermischen 
Widerstand des Fiihlers, der thermische Widerstand der Quarzschicht abgezogen wurde. Die Ergebnisse 
werden verglichen mit denen von Sajben fiir lange Drlhte mit Emailmantel und mit der vorhandenen 
Theorie fiir unendliche Zylinder. Es werden Berechnungsgleichungen angegeben. Die niedrige Emp- 
findlichkeit endlicher Zylinder kann qualitativ erkl&t werden durch die Endverluste, dass heisst durch 
zweidimensionale Leitung in den Geschwindigkeitspotentialfllchen bei beliebigen Geschwindigkeiten. 

Zum Vergleich werden Ergebnisse des WSirmeiibergangs an Wasser angegeben. 

AHHOTaqua-HO3~~nqaeliTbI BHeIIIHerO TenJIOO6MeHa MeHcny KOpOTKLlM ~IUIElII@WIeCKIUvl 

RBTWKOM TepMOaHeMOMeTpa C KBapqeBbIM IIOKpbITLIeM II pTyTbI0, B KOTOpyIO OH IIOMt3IJeH. 
OIIpe~eJIFIJIIJCb IIyTeM BbI'IHTaIfIUI TepMWIeCKOrO COIIpOTHB~eHHFI XBapIJa Ii3 061~~0 TepMH- 

YeCKOrO COIIpOTIIBJIeHlWI AaTYlrKa. Pe3yJIbTaTbI CpaBHI4BaJIHCb C ,LWHHbIMSI CeI%BeHa !JJIFI 

AJIEIHH~IX nporionoqeK, a TaHxe c Ime~~IiM~cfI TeopeTWIecKLlMMpeIIIeHII~Mx AmI 6eCKOHeY- 

HbIX I@IJIIIH~pOB. npHBeneHb1 KOppeJIHpyIoIIWe ypaBHeHHH. HABKYIO 4yBCTBHTeJ1bHOCTb 

KOpOTKGlX IIpOBOJIOWK MOWHO K39eCTBeHHO 06'bFfCHHTb Cy~eCTBOBaHHeM KOHIIeBbIX IIOTeph, 

T.e. AByMepHOZt IIpOBOAHMOCTbIO Ha IIOBepXHOCTRX IIOTeHIVIWIbHOrO 06TeKaHEIfI IIpI4 IIpOI43- 

BOJIbHbIX CKOpOCTHX. Am CpaBHeHHR IIpIIBOAfITCFI TBK?Ge aHaJIOI%lqHbIe AaHHb2e II0 TeIIJIO- 

06MeHy IIpOBOJIO=IeK C BOAOfi. 


